Exact Form of the Bogoliubov Excitations in One-dimensional Nonlinear Shrödinger Equation
نویسنده
چکیده
In the paper we present the exact solutions of one-dimensional Non-linear Shrödinger Equation. The solutions correspond to the Bogoliubov excitations in Bose-gas with a local interaction. The obtained expression is used for evaluating the transmission coefficient of the excitations across a δ-functional potential barrier.
منابع مشابه
Analytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series
A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملExact solutions of (3 +1)-dimensional nonlinear evolution equations
In this paper, the kudryashov method has been used for finding the general exact solutions of nonlinear evolution equations that namely the (3 + 1)-dimensional Jimbo-Miwa equation and the (3 + 1)-dimensional potential YTSF equation, when the simplest equation is the equation of Riccati.
متن کاملMulti soliton solutions, bilinear Backlund transformation and Lax pair of nonlinear evolution equation in (2+1)-dimension
As an application of Hirota bilinear method, perturbation expansion truncated at different levels is used to obtain exact soliton solutions to (2+1)-dimensional nonlinear evolution equation in much simpler way in comparison to other existing methods. We have derived bilinear form of nonlinear evolution equation and using this bilinear form, bilinear Backlund transformations and construction of ...
متن کاملLinear and Nonlinear Bullets of the Bogoliubov-de Gennes Excitations.
We report on the focalization of Bogoliubov-de Gennes excitations of the nonlinear Schrödinger equation in the defocusing regime (Gross-Pitaevskii equation for repulsive Bose-Einstein condensates) with a spatially modulated periodic potential. Exploiting the modification of the dispersion relation induced by the modulation, we demonstrate the existence of localized structures of the Bogoliubov-...
متن کامل